Tuesday, June 9, 2009

Super-Size Me: Black Hole Bigger Than Previously Thought

Universe Today - June 8, 2009
Using a new computer model, astronomers have determined that the black hole in the center of the M87 galaxy is at least twice as big as previously thought. Weighing in at 6.4 billion times the Sun’s mass, it is the most massive black hole yet measured, and this new model suggest that the accepted black hole masses in other large nearby galaxies may be off by similar amounts. This has consequences for theories of how galaxies form and grow, and might even solve a long-standing astronomical paradox.
...
Today’s conclusions are model-based, but Gebhardt also has made new telescope observations of M87 and other galaxies using new powerful instruments on the Gemini North Telescope and the European Southern Observatory’s Very Large Telescope. He said these data, which will be submitted for publication soon, support the current model-based conclusions about black hole mass.
...

Black hole is most massive known

MSNBC - June 8, 2009
The most massive black hole yet weighed lurks at the heart of the relatively nearby giant galaxy M87.

The supermassive black hole is two to three times heftier than previously thought, a new model showed, weighing in at a whopping 6.4 billion times the mass of the sun. The new measure suggests that other black holes in nearby large galaxies could also be much heftier than current measurements suggest, and it could help astronomers solve a longstanding puzzle about galaxy development.
...
While the new mass of M87 is based on a model, recent observations from the Gemini North Telescope in Hawaii and the European Southern Observatory's Very Large Telescope in Chile support the model findings.
...

A Real Whopper: Black Hole Is Most Massive Known

Space.com - June 8, 2009
The most massive black hole yet weighed lurks at the heart of the relatively nearby giant galaxy M87.

The supermassive black hole is two to three times heftier than previously thought, a new model showed, weighing in at a whopping 6.4 billion times the mass of the sun. The new measure suggests that other black holes in nearby large galaxies could also be much heftier than current measurements suggest, and it could help astronomers solve a longstanding puzzle about galaxy development.

"We did not expect it at all," said team member Karl Gebhardt of the University of Texas at Austin.

The discovery was announced here today at the 214th meeting of the American Astronomical Society.
...
While the new mass of M87 is based on a model, recent observations from the Gemini North Telescope in Hawaii and the European Southern Observatory's Very Large Telescope in Chile support the model findings.

The study of M87's mass will also be detailed later this summer in the journal Astrophysical Journal.

Texas-sized computer finds most massive black hole in galaxy M87

Astronomy.com - June 8, 2009
Astronomers Karl Gebhardt from The University of Texas at Austin and Jens Thomas from the Max Planck Institute for Extraterrestrial Physics have used new computer modeling techniques to discover that the black hole at the heart of M87, one of the largest nearby giant galaxies, is two to three times more massive than previously thought. Weighing in at 6.4 billion times the Sun's mass, it is the most massive black hole measured with a robust technique, and it suggests that the accepted black hole masses in nearby large galaxies may be off by similar amounts. This has consequences for theories of how galaxies form and grow, and might even solve a long-standing astronomical paradox.
...
Today's conclusions are model-based, but Gebhardt also has made new telescope observations of M87 and other galaxies using new powerful instruments on the Gemini North Telescope in Hilo, Hawaii, and the European Southern Observatory's Very Large Telescope in Chile. He said these data support the current model-based conclusions about black hole mass.
...

Galactic Black Holes May Be More Massive Than Thought

U.S. News & World Report - June 9, 2009
Astronomers report that some of the biggest supermassive black holes in nearby galaxies are at least twice and possibly four times as heavy as previously estimated. The findings come from new simulations by two independent teams of researchers, as well as new observations of stars whipping around a handful of supermassive black holes at the centers of massive galaxies no more than a few hundred million light-years from Earth.
...
Accounting for dark matter “is an effect that in retrospect is obvious,” said Gebhardt, and “in some galaxies like M87, it can be very important.” Unpublished simulations of three other galaxies show signs of a similar increase, he notes. And high-resolution observations of M87 by Gebhardt and colleagues using the Gemini North telescope atop Hawaii’s Mauna Kea agree with the revised theoretical estimate, he said.
...

Texas-Size Computer Finds Most Massive Black Hole In Galaxy M87

Science Daily - June 9, 2009
Astronomers Karl Gebhardt (The University of Texas at Austin) and Jens Thomas (Max Planck Institute for Extraterrestrial Physics) have used new computer modeling techniques to discover that the black hole at the heart of M87, one the largest nearby giant galaxies, is two to three times more massive than previously thought.
...
The conclusions are model-based, but Gebhardt also has made new telescope observations of M87 and other galaxies using new powerful instruments on the Gemini North Telescope and the European Southern Observatory's Very Large Telescope. He said these data, which will be submitted for publication soon, support the current model-based conclusions about black hole mass.
...

Galactic black holes may be more massive than thought

ScienceNews - June 8, 2009
Astronomers report that some of the biggest supermassive black holes in nearby galaxies are at least twice and possibly four times as heavy as previously estimated. The findings come from new simulations by two independent teams of researchers, as well as new observations of stars whipping around a handful of supermassive black holes at the centers of massive galaxies no more than a few hundred million light-years from Earth.
...
Accounting for dark matter “is an effect that in retrospect is obvious,” said Gebhardt, and “in some galaxies like M87, it can be very important.” Unpublished simulations of three other galaxies show signs of a similar increase, he notes. And high-resolution observations of M87 by Gebhardt and colleagues using the Gemini North telescope atop Hawaii’s Mauna Kea agree with the revised theoretical estimate, he said.
...